For a Kinder World

Dimitris Menemnelis

Volunteer Board Member at "For A Kinder World"

Jet Propulsion Laboratory, California Institute of Technology

Relevant Experiences

25+ years of experience working with ocean circulation models and state estimation technology. Developer of Massachusetts Institute of Technology general circulation model (MITgcm) and contributor to Estimating the Circulation and Climate of the Oceans (ECCO) and Carbon Monitoring System Flux (CMS-Flux) projects.

Appointments

1998 to present Jet Propulsion Laboratory, Research Scientist
1993 to 1998 Massachusetts Institute of Technology, Research Scientist

Education

Ph.D., 1993 Univ. Victoria, British Columbia, Electrical Engineering
M.A.Sc., 1987 Waterloo Univ., Ontario, Electrical Engineering
B.Eng. Honours, 1984 McGill Univ., Montreal, Quebec, Electrical Engineering

Selected Professional Activities

2010–present NASA Ocean Vector Wind Science Team
2015–present NASA SWOT Science Definition Team
2016–present NASA Sea Level Change Team

Selected Publications (> 100, H-index 32)

  • Nelson, A. D., Arbic, B. K., Menemenlis, D., Peltier, et al. (2020). Improved Internal Wave Spectral Continuum in a Regional Ocean Model. J. Geophys. Res. 125: 1–15.
  • Stewart, A., A. Klocker, and D. Menemenlis (2019). Acceleration and Overturning of the Antarctic Slope Current by Winds, Eddies, and Tides. J. Phys. Oceanogr. 49: 2043–2074.
  • Manizza, M., D. Menemenlis, H. Zhang, and C. Miller (2019). Modeling the Recent Changes in the Arctic Ocean CO2 Sink (2006–2013). Global Biogeochem. Cy. 33: 420–38.
  • Stocken, T., D. Carroll, D. Menemenlis, M. Simard, and N. Koedam (2019). Global-Scale Dispersal and Connectivity in Mangroves. Proc. Natl. Acad. Sci. 116: 915–22.
  • Hutter, N., M. Losch, and D. Menemenlis (2018). Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations. J. Geophys. Res. 123: 672–87.
  • Nakayama, Y., D. Menemenlis, H. Zhang, M. Schodlok, and E. Rignot (2018). Origin of Circumpolar Deep Water Intruding onto the Amundsen and Bellingshausen Sea Continental Shelves. Nat. Comm. 9: 3403.
  • Su, Zhan, Jinbo Wang, Patrice Klein, Andrew F. Thompson, and Dimitris Menemenlis (2018). Ocean Submesoscales as a Key Component of the Global Heat Budget. Nat. Comm. 9: 1–8.
  • Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes (2012). Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol. 53: 229–234.
  • Nguyen, A., D. Menemenlis, and R. Kwok (2011). Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. J. Geophys. Res. 116: C04025.
  • G. Spreen, R. Kwok, and D. Menemenlis (2011). Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys. Res. Lett. 38: L19501.
  • Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., & Hill, C. N. (2010). On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Model. 33: 129–144.
  • Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, et al. (2008). ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31: 13–21.
  • Menemenlis, D., I. Fukumori, and T. Lee (2007). Atlantic to Mediterranean Sea Level Difference Driven by Winds near Gibraltar Strait. J. Phys. Oceanogr. 37: 359–376.
  • Menemenlis, D., C. Hill, A. Adcroft, J. Campin, et al. (2005). NASA supercomputer improves prospects for ocean climate research. EOS Transactions AGU 86: 89–96.
  • Menemenlis, D., I. Fukumori, and T. Lee (2005). Using Green’s Functions to calibrate an ocean general circulation model. Mon. Weather Rev., 133: 1224–1240.
  • Gross, R., I. Fukumori, D. Menemenlis, P. Gegout (2004). Atmospheric and oceanic excitation of length-of-day variations during 1980–2000. J. Geophys. Res. 109: B01406.
Show Buttons
Hide Buttons