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FUNDAMENTALS ELECTROMYOGRAPHY (EMG) 
 
Introduction 

 
Electromyography (EMG) is a technique used for evaluating the physiological, biochemical, and 

electrical activity of skeletal muscles during contraction. The EMG signal reflects the effect of 

an external excitation (or pathological condition) on a skeletal muscle. This effect is represented 

by a time evolving plot. In this plot, the horizontal axis is used to represent the evolving time in 

milliseconds (mesa) and the vertical axis represents the magnitude of electrical potential of the 

effect of this excitation in mill volts (mV).  This electrical potential is generated by muscle cells 

when these cells are activated.  The EMG signal, if it is properly analyzed, it will reflect the 

physiological properties of the skeletal muscle. That is, contractibility (ability of muscle cells to 

forcefully shorten), excitability (ability of muscle cells to forcefully activated), extensibility, and elasticity.  

Furthermore, it will provide information about muscle fatigue (the inability of the muscle to do work) 

which is probably the most important physiological property of a muscle condition.  
 

The EMG signal analysis could also help to: detect medical abnormalities, activation level, 

recruitment order, normal/abnormal neuromuscular functioning, and to analyze the biomechanics 

of human movement. 

 
Note that here we are referring to data obtained from surface EMG (S-EMG) measurements. 

 
There are two technique used for the processing of S-EMG signals: (1) The time domain and (2) 

the frequency domain.  In the case of time domain, researchers applied techniques such as 

integration, linear envelope, root-mean-square (RMS), and count zero-crossings, while in the 

case of frequency domain, Fourier transformations (FFT) have been used to transform a time 

domain signal into the frequency domain.   

 
FFT has been used to obtain the frequency spectrum of the S-EMG signal which was recorded 

during sustained (isometric) muscle contraction, which in turn has been used to detect muscle 

fatigue, force production, and muscle fiber signal conduction velocity.  In addition, the study of 

the power spectrum can provide information about spatial and temporal recruitment of motor 

units.  It has been suggested that each muscle may have a characteristic power spectrum. 
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Mean and median frequencies are also measured by FFT and shifts to lower frequencies during 

sustained muscle contraction have been reported in.  However, there are some controversies 

regarding the shift of median and mean frequencies as a result of muscle fatigue.  Some studies 

report that the median frequency is a more reproducible measure of muscle fatigue than the mean 

frequency because it is less sensitive to noise and perturbation of the signal.  Other studies have 

shown that mean frequency, rather than median frequency, yields a more sensitive measure of 

spectral shifts.  The shifts to lower frequencies of the median and/or  mean frequency usually 

corresponds to physiochemical changes associated with fatigue, changes in the action potential 

transmission velocity, the characteristics of the types of motor units (fast or slow), and their ratio 

in a particular muscle or muscle group.  

 
It should be pointed out here that FFT is a suitable method for stationary signals. However, S-

EMG is a non-stationary signal (signal with time varying frequency), and for that reason in this study, we 

are using a powerful mathematical method which is suitable for non-stationary signals. This 

method is known as Wavelet Transform (WT) and enables us to obtain more information about 

the S-EMG signal we are dealing with. More specifically, WT analysis will help us to view the 

signal at various scales and thus enable us to obtain a far more detailed frequency analysis and 

identify easily signal features difficult to recognize otherwise.  Furthermore, WT it is a more 

powerful tool than Fourier methods for S-EMG analysis, since it provides an optimum time-

frequency resolution.  

 
In this study, there are two types of skeletal muscle fibers that we are interested in: slow-twitch 

(type I) and fast-twitch (type II). Type I are slow twitch fibers with high endurance (long-

endurance such as distance running,), while Type II are fast twitch fibers with lower endurance (these 

muscles fatigue faster but are used in powerful bursts of movements like sprinting). 

 

1. The Central Nervous System (CNS) 

 

Figure 1 shows a simplified functional diagram of the central nervous system and how an EMG 

signal is acquired.  
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Fig 1. Central Nervous System and a typical EMG acquisition system. 

 

2. Anatomical structure of Skeletal Muscle 

The muscle is surrounded by a connective tissue called epimysium and is divided by fascicles by 

perimysium which contain several muscle fibers.  The structural unit of skeletal muscle is the 

muscle fiber, or cell (Fig. 2).  A muscle cell is a thin structure ranging from 10 to 100 microns in 

diameter and from a few millimeters to 30 cm in length.  The muscle fibers do not extend the 

entire length of the muscle.  Instead, the cells are attached to either the origin or insertion tendon 

at one end and connective tissue septa at the other end.  The muscle fiber is further subdivided 

into myofibrils where thick and thin filaments are arranged longitudinally.  A muscle fiber 

produces force by contracting. 

 
 

Fig 2.  The organization of skeletal muscle 
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A muscle fiber is surrounded by the sarcolemma.  The sarcolemma is a thin semi permeable 

membrane composed of a lipid bilayer that has channels by which certain ions can move 

between the intracellular and the extra cellular fluid. 
 

Muscle fibers are always grouped together sharing the same nerve fiber. This nerve fiber (axon), 

refer to Fig 1 is the transmission line of a nerve cell and runs from the spinal cord to the 

peripheral muscle. A nerve cell which innervates a group of muscle fibers is known as motor-

neuron. Every cell is located close to the spinal cord.  

Muscle fatigue is the inability of a muscle to generate force. It can be a result of vigorous 

exercise, but abnormal fatigue may be caused by barriers to or interference with the different 

stages of muscle contraction. 

 

3.  Action Potential (AP) 

 
There is a difference in the composition of the extra cellular fluid and intra cellular fluid in 

resting state. The resting membrane potential is the voltage difference across the plasma 

membrane induced by the electrochemical potential difference.  The major ions that maintain the 

resting potential are Na+ K+, Cl-, etc.  When substantially large stimulus is applied, an action 

potential is triggered.  This takes place only when the depolarization is sufficient to reach a 

threshold value (Fig 3).   

 

Electrical muscle activity, electromyography (EMG), is the result of an external excitation of 

the muscle fiber (cell) which usually runs along the whole muscle from tendon to tendon. In its 

resting state, there is a potential of approximately -90mV across the cell membrane (the fiber 

wall) with zero reference on the outside. The fiber is an 'on-off device' in the sense that 

mechanical work is produced in twitches only, which have durations ranging from 35 to 75 ms 

(1). 
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Fig 3.  Action potential 

 

An action potential is a rapid change in the membrane potential followed by a return to the 

resting membrane potential.  An action potential is propagated with the same shape and size 

along the whole length of a nerve or muscle cell. 

 
4.  Discussion on Motor Unit (MU) Recruitment Process (Activation) 

 

The smallest functional unit of muscle contraction is the motor unit (Figs 1 and 4).  A motor 

unit consists of a group of muscle fibers innervate by a single motor neuron (in other words, a motor 

unit consists of one motor neuron and all the muscle fibers it stimulates).  Within a single motor unit, individual 

muscle fibers discharge nearly at the same time. 
  

      
Fig 4.  Motor Unit 
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Motor unit recruitment refers to the activation of additional motor units to accomplish an 

increase in contractile strength in a muscle. The higher the recruitment the stronger the muscle 

contraction will be. In physiology, an action potential occurs when the membrane potential of a 

specific cell location rapidly rises and falls: this depolarization then causes adjacent locations to 

similarly depolarize. 

 
When an action potential is evoked in a motor nerve by a critical depolarization, an endplate, or 

the neuromuscular junction, potential is produced by acetylcholine release.  Acetylcholine 

stimulates the membrane of the muscle fiber, or sarcolemma.  This triggers rapid depolarization 

(about +20mV) and repolarization of the muscle fiber (Fig.3).  The action potential is propagated 

along the sarcolemma and into the muscle fiber through the transverse tubules.  The generation 

of an action potential takes place in all the muscle cells in the motor unit and is followed by 

synchronous contractions of all the muscle cells in the motor unit.  A motor-neuron together with 

its muscle fibers is called motor unit (MU). The number of muscle fibers coupled in one MU 

range from 3 (in small muscles) up to 1000 (in large muscles). All fibers belonging to the same 

MU are triggered simultaneously. The AP seen in by an electrode recording is the 

superposition of all the APs of the muscle fibers belonging to the triggered MU (MU-AP). 

The MU is usually activated repeatedly with a firing frequency of 10-50 Hz. A whole muscle 

usually consists of several hundreds of MUs. 

 

The force development of the muscle is modulated by the CNS by recruitment of an 

appropriate number of MUs and by varying the firing frequencies of the recruited MUs. The 

MUs seem to be recruited in a fixed order according to the reversed size order of their motor-

neuron. 

 

The depolarization generates an electric field near the muscle fibers which can be detected 

by a skin surface electrode located near this field.  The resulting signal is called the muscle 

fiber action potential.  The combination of the muscle fiber action potential from all the muscle 

fibers of a single motor unit is the motor unit action potential. 
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When an electrical impulse originated from the central nervous system (CNS) reaches a point on 

the muscle (a point at which a nerve fiber comes in contact with a muscle fiber called innervation point) of the 

muscle fiber, a twitch is triggered via a biochemical transmission process. The biochemical 

process of transferring chemical energy into mechanical energy is elicited on both sides of the 

innervation point and spreads in both directions towards the ends of the muscle fiber. The 

biochemical process is accompanied by a transient drop of the membrane potential called 

depolarization. The electrical activity of the depolarization is detected with an electrode in the 

vicinity of the fiber. This signal is referred to as an action potential (AP). The AP resembles the 

transient membrane potential in Fig. 3 

 

5. Surface Electrodes 

Surface EMG (S-EMG) is a non-invasive technique that measures signals containing certain 

temporal characteristics useful for understanding the muscle’s response.  Surface electrodes, 

place over the muscle, and register summated activities from many motor units.  S- EMG can be 

obtained by using electrodes affixed to the surface of the skin.  With the development of very 

sophisticated electrodes, S-EMG is now being used in many areas of ergonomics, sports 

medicine and even in clinical applications.  S-EMG is a very useful tool in detecting integrated 

muscular behavior. 

 
One advantage of the S-EMG technique is the convenience in terms of relative ease of 

application and lessened discomfort of the subject.  On the other hand, there are few 

disadvantages in using the S-EMG technique.  The surface electrodes do not have selectivity to 

a specific muscle fiber because of the wide pickup are from the muscle as compared to fine wire 

electrodes.  The signals detected from the pickup area may originate in a deep muscle, or even 

worse, from different muscle groups.   

 

Therefore, there are concerns about the validity of a recording.  Although efforts have been made 

to quantify and determine the effect of cross talk, there is no established or easy way for S- EMG 

to eliminate this problem.  In general, however, S-EMG is satisfactory for the analysis of 

temporal, force, or fatigue relationships.  The main advantage of surface electrode can be most 
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effectively utilized when the simultaneous activity of many muscles is being studied in a large 

group of muscles. 

 

In summary, the EMG signal can be detected either by intramuscular electrodes (needle or wire) 

or by surface electrodes attached to the skin over the studied muscle. In both cases the EMG is 

the sum of the contributions from a large number of MU-APs in the muscle. The MU-AP is 

attenuated substantially on its way through the tissue. Hence, with intramuscular electrodes, MU-

APs adjacent to the electrode, strongly dominate over contributions from more distant MU-APs. 

With surface electrodes, a larger number of MUs contribute. Since the amplitude of the MU-AP 

rapidly decreases with distance, the main contribution to an S-EMG comes from the superficial 

part of the muscle. Hence, S-EMG is restricted to superficial muscles. 

 

The electrically conducting part of a surface electrode usually consists of a silver-covered 

surface (10-50 mm2) which is taped or glued to the skin. The impedance between electrode and 

skin is reduced by applying some kind of electrode paste. The standard procedure is to use two 

electrodes, 10-20 mm apart, placed over the belly of the muscle and aligned in the muscle fiber 

direction. The two electrodes are connected to a differential amplifier with a third electrode 

placed somewhere else on the body as a reference. The input impedance and common mode 

rejection should be as high as possible. 

 

6. Features of EMG 
 

Considerable progress has been made when EMG analysis has been used in ergonomics to 

investigate topics like musculoskeletal injury, low-back pain, and muscle fatigue from 

overexertion. Although modern instrumentation has greatly facilitated the acquisition of EMG 

data, many issues remain unresolved in the interpretation of EMG signals. 

 
The information obtainable from EMG analysis can be generally divided into the following three 

categories. (1) The relationship between temporal aspects of EMG and anatomically associated 

movement. (2) The relationship between EMG and production of force. (3) The relationship 

between EMG and muscle fatigue.  
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6.1 Temporal Information 

 

The most basic information obtainable from an EMG recording is whether the muscle was on or 

off during an activity or at a particular time.  In order for a muscle to be considered on, the EMG 

recording must exceed a certain threshold, whether defined by an arbitrarily of statistically 

predetermined level or by the noise level of the equipment responsible for the measurement.  It 

often is more difficult to determine that a muscle is off because a muscle may infrequently be in 

a state of total relaxation. 

 
Some researchers describe the threshold in an absolute value.  This measure simply relates how 

active the muscle was during the experimental conditions.  The measure is not an indication of 

muscle force, but simply a function of muscle usage.  The signal can be quantified in several 

ways.  Quantification may include peak activity, mean activity, activity as a function of a given 

position or posture, and rate of muscle activity onset. 

 

To determine the on-off state, force, or fatigue present within a muscle, some form of EMG 

signal treatment usually is recommended and often required.  If the raw or processed signal 

exhibited activity, the muscle was in use during the exertion.  Differences do exist, however, 

between the temporal characteristics of the EMG and the produced tension.  The most apparent is 

the pure time delay. Initial tension levels in the muscle also influence the delay times seen at 

onset. 
 

Most studies that now investigate the on-off state of the muscle are interested in the phasing of 

the EMG activities under various experimental conditions.  A quantitative evaluation of muscle 

on-off state was performed by Marras and Reilly, using statistical analysis of muscle event 

time’s derived from processed EMG.  They were interested in how the patterns of trunk muscle 

activation changed as the angular velocity of the trunk increased during controlled simulated 

lifting motion. 
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6.2 EMG-Force Production 

 
An EMG-force measurement seeks to quantify the average number and firing rate of motor units 

contributing to a particular muscle contraction, and to relate the quantity to the actual force 

produced.  With increasing intensity of a contraction, more and more units will be recruited, and 

the unit firing frequency will also be increased.  The observed motor unit activity reflects these 

changes as the resulting interference pattern becomes denser and of greater amplitude.  The 

signal can be processed to estimate a numerical value (usually a percentage of a maximum 

voluntary contraction) to the level of EMG activity associated with the generation of a 

corresponding force. 

 
However, a great deal of confusion exists regarding the relationship between processed EMG 

and produced force.  Researchers have long suggested that EMG could be used to represent the 

active control input of the muscle, and that some relationship must exist.  Some researchers have 

presented EMG as a direct indication of muscle force while others have presented very complex 

models using these signals to predict force.  Many researchers have attempted to investigate the 

force of a muscle by simply observing the rectified and averaged (in some cases integrated) 

EMG signal in terms of the absolute number of micro volts generated and associated with a 

particular activity. One aspect of this study investigated was whether or not the normalized 

surface EMG signal amplitude versus normalized force relationship was dependent on exercise 

level.  The RMS value of the signal amplitude was used as the variant parameter because it is the 

parameter that more completely reflects the physiological correlates of the motor unit behavior 

during a muscle contraction.  (This result showed almost linear relationship between normalized 

RMS and force). 

 
6.3 EMG-Muscle Fatigue  

 
Very little is known about general physical fatigue that is experienced after heavy work.  

Metabolic changes, such as an increased blood lactate concentration and a fall in pH, may 

contribute to the perception of fatigue but cannot fully explain the phenomenon. 

 
Fatigue can be experienced slowly or rapidly depending on the type of work performed by a 

muscle.  When the workload is relatively small, the slow motor units are initially excited.  If the 
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task requires fast and forceful contractions, fast motor units are also recruited for maximum 

output.  Rapid muscle fatigue can be observed in the latter case. 

 
6.3.1 Localized Muscle Fatigue 

 
We are interested in fatigue on a local level within the body.  This is true particularly in 

musculoskeletal exertions.  Typical externally visible symptoms of fatigue are loss of force 

production capabilities and localized discomfort and pain.  This type of fatigue has become 

known as localized muscle fatigue (LMF).  Muscle exertion levels do not necessarily need to be 

high to cause LMF. Isometric contractions of as low as 10% of maximum voluntary contraction 

have shown signs of LMF. 

 

6.3.2 Spectral Charges in EMG during Fatigue 

 
During LMF, changes occur in the surface recorded EMG signal.  Two of the most commonly 

cited changes are a shift in the frequency content of the signal toward the low end and an 

increase in the amplitude.  Many researchers have applied spectrum analysis methods to show 

the presence of fatigue. Lindstrom and DeLuca contend that the spectrum shift and amplitude 

increase is related.  They state that tissue acts as low pass filter.  As the frequency content of the 

original signal shifts to the lower frequencies, more energy is transferred through the tissues to 

the electrodes.  This energy transfer, in turn, increases the amplitude of the recorded signal. 

 
A group of investigators have demonstrated a decrease of power density in the high frequency 

region of the EMG signal and increase in the low frequency region during fatigue contractions. 

Many researchers have proposed physiologic explanations for the changes in amplitude and 

spectral characteristic.  Lindstrom et al. has demonstrated that the frequency shifts were almost 

entirely dependent on the propagation velocity of the action potentials.  The reduced propagation 

velocities have been linked to the production and accumulation of acid metabolites. 

 
Some investigators, however, showed that the use of spectral analysis does not provide 

significant differences with fatigue.  They may be related to the fact that the frequency of the 

EMG signal can be altered by many factors, for example, by the change in load or by the change 

in muscle length. 
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6.3.3 Muscle Fatigue through microvolt 

 
As described above, the EMG signal will increase its amplitude while the muscle is exerting a 

given amount of force in an isometric contraction.  This may be due to the need to recruit more 

motor units to perform the same amount of work as the muscle fiber fatigue.  Thus, by observing 

the processed EMG signal of a given portion of the muscle under constant force conditions, a 

quantitative indicator of the degree of muscle fatigue can be established.  It is also important to 

note that this trend is evident only with surface electrodes. 

 
Limitations in Fatigue Analysis 

 

Although the use of EMG in measuring localized muscle fatigue is well established and 

frequently used, the technique has limitations.  It is important to understand some of these 

limitations before undertaking an EMG analysis in the field of ergonomics or biomechanics.  The 

first problem is in the basis definition of fatigue.  Because there is no universal definition of 

fatigue, agreement on the validity and meaning of EMG measures will be questioned.  Other 

factors in LMF such as pain tolerance, motivation, and synergistic accommodation are not 

included in EMG analysis and yet have been argued to be important.  Additionally, spectral 

shifts have been used for short-term contraction fatigue, but the use of EMG in long-term fatigue 

is questioned.  For muscle fatigue that occurs over a longer period of time, possibly hours, the 

use of EMG has not been well established.  In addition, shifts in the various EMG indices have 

been shown to decrease rapidly during the initial stages of a contraction, but do not decay as 

rapidly toward the end of a long session of work. 

 
 

7. Processing of EMG 

 

EMG signals are neither periodic nor deterministic.  In other words, the statistical behavior of the 

EMG signal is not exactly the same for every time arbitrarily chosen.  Indeed, they do not repeat 

with a definite time interval, and a single mathematical expression cannot specify a detected 

EMG signal for all time.   
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7.1 Time Domain 

 
The raw (unprocessed) EMG signal reveals the myoelectric activity from a muscle. Generally, as 

a first step, visual inspection of the EMG is made to compare the signal information and the 

general character of the movement, and the valuable feature is determined.  The rapid random 

fluctuations in the signal are ignored as being due to the random summation and subtraction of 

the many muscle fiber action potentials detected.  Instead, attention is paid to the boundary or 

envelop of the EMG signal.  This signal processing is context specific, intuitive and has a 

quantitative basis that many signal processing methods seeks to mimic and even exploit. 

 
The interpretation of EMG has long been performed by visual inspection of the raw signal.  The 

observer was able to identify from the raw signal when a muscle shows activity or not.  The on-

off, or active-active, temporal information from raw EMG signals, however, may sometimes 

cause difficulties in extracting interpretations of the muscle’s behavior.  According to the study 

of Winter, the on-off information can be different if a different threshold level is used.  It is very 

likely that the result can be misrepresented. 

 
The simple comparisons of peak-to-peak amplitudes are inaccurate since the raw EMG signal is 

highly complex. Even if the raw signal is recorded with high quality instruments, proper 

processing of the EMG is required for a correct interpretation.  A few time-domain based EMG 

signal processing techniques are used for extracting useful information relevant to the purpose of 

the ergonomic or kinesiology study.  Most of the processing techniques are used to detect the 

muscular activities. 

 

7.2 Rectification 

 
The raw EMG detected by surface electrodes and amplified by a linear differential amplifier is a 

bipolar signal and oscillates randomly with a zero-mean value.  Rectification is one technique 

frequently used in EMG-processor designs to translate the raw signal to a single polarity. 

 
RECT [x (t)] = |x (t)|                                                              (1) 

 
In most cases, full-wave rectification is preferred because it retains all the energy of the signal 
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7.3 Linear Envelope 

 
The rectified signal still expresses the random nature of the amplitude of the signal.  A useful 

approach for extracting amplitude-related information from the signal is to smooth the rectified 

signal.  The concept of smoothing involves the suppression of the high-frequency fluctuation 

from a signal so that its deflections appear smoother.  This may be recognized as low-pass 

filtering procedure.  The smaller the bandwidth is, the greater the smoothing will be. 

 
|𝑥(𝑡)|��������𝑡2−𝑡1 =  1

𝑡2−𝑡1
 ∫ | 𝑥(𝑡)|𝑡2

𝑡1 𝑑𝑡                                                 (2) 

 
The equivalent operation to smoothing, in a digital sense, is averaging.  The time window (T = t2 

– t1) can be set for a certain interval and the move the window along the window; this is called 

moving average.  This operation introduces a lag. 

 
|𝑥(𝑡)|�������� =  1

𝑇
 ∫ | 𝑥(𝑡)|𝑡+𝑇

𝑡 𝑑𝑡                                                    (3) 

 
The output of the linear envelope detector represents a moving average of EMG activity.  An 

undesirable side effect of the low-pass filter is the phase lag it causes in the envelope response.  

This lag may introduce significant errors in the measurement of temporally related variables.  

The phase lag can be avoided by using advanced signal processing techniques. 

 
 
7.4 Integration 

 
The most commonly used and abused data reduction procedure in EMG is the concept of 

integration.  Integration refers to the mathematical operation of computing the area under the 

curve and the units are V·s or mV·ms.  It is necessary to full wave rectify the raw signal to 

obtain the absolute value since the integral of the raw EMG is zero.  The integral will increase 

continuously as a function of time.  Usually the signal is integrated over a small area and then 

that is repeated over for entire signal. 

 
𝐼[ 𝑥 (𝑇)] =  ∫ | 𝑥 (𝑡)|𝑑𝑡𝑡

0                                                       (4) 
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Typically integrating over fixed time interval is used.  The integrated rectified value may be 

more useful, thereby indicating any time-dependent modifications of the signal. 

 
𝐼[ 𝑥 (𝑇)] =  ∫ | 𝑥 (𝑡)|𝑑𝑡𝑡+𝑇

0                                                   (5) 

 
Integrated EMG may represent the number of active motor units since it is related with the 

amplitude, duration and frequency of the action potentials.  It can also provide temporal 

information in the form of relative muscle activity over a period. 

 

7.5 RMS (Root-Mean-Square) 
 

RMS processing is a method that allows consistent, valid, and accurate measurements of noisy, 

non-periodic, non-sinusoidal signals.  Deluca and Van Dyke have demonstrated that the RMS 

value contains more relevant information than the mean rectified or integrated EMG. 

 

𝑅𝑅𝑅 [ 𝑥 (𝑡)] =  �1
𝑇 ∫ | 𝑥2(𝑡)𝑑𝑡𝑡+𝑇

0                                                (6) 

 
The RMS is not affected by the cancellation caused by the superposition of motor unit action 

potential trains.  The RMS value is recommended more than previously described parameters. 

 
7.6 Zero Crossings and Turns Counting 

 

The zero-crossing method consists of counting the number of occurrences per unit time that the 

amplitude of the signal contains either a peak or crosses the zero value of the signal. This 

technique is not recommended for measuring the behavior of the signal as function of force or as 

a function of time during a sustained contraction.  The turns or zeros and umber of motor unit 

action potential trains are linear for low level contractions.  But as the contraction level increases, 

the additionally recruited motor units contribute motor unit action potential trains to the EMG 

signal.  When the signal amplitude attains the characteristics of Gaussian random noise, the 

linear proportionality no longer holds. 
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The temporal aspects of the EMG-force relationship are affected by the specific processing 

methodology applied.  The primary factor is the low-pass properties associated with the filtering 

function used.  In most cases, such as integration and RMS, the filtering function is an 

exponential window with some associated time constant.  A longer time constant produces a 

smoother estimate of the electrical activity of the muscle.  This beneficial during static exertions 

where the electrical state of the muscle is stationary.  During dynamic exertions, however, the 

response of the filter may be too slow to capture the changes occurring in the electrical state. The 

choice of an appropriate time constant is important for the type of activities under investigation. 

 

The two most common techniques are integration and RMS, which have been shown to affect the 

temporal aspects of EMG differently.  Additionally, the two common methods of estimating the 

RMS have different rise and full times.  Thus, not only the time constant but also the dynamic 

aspects of the specific processor are important considerations if temporal information is to be 

derived from processed EMG. 

 
7.7 Frequency Domain 

 
Frequency domain processing is used to shift the electromyography’s reference to the 

information content of the EMG signal from the time domain to the frequency domain.  The 

value of this technique is in simplifying the identification and quantification of EMG information 

that manifests itself as changes in EMG frequency content.  A normal use of this technique is to 

identify EMG frequency spectrum shifts believed to be related to localized muscle fatigue. 

 
Fourier Transform and Power Spectrum 

 

Fourier analysis has provided a great deal of applications to the signal analysis and processing 

area of EMG.  The FFT is the most common method for determining the frequency spectrum of 

surface EMG signals recorded during sustained (isometric) muscle contraction.  The power 

spectral density is the function commonly used for frequency domain analysis of EMG.  It is 

defined as the Fourier transform of the autocorrelation function.  An integration of the power 

spectral density over all frequencies yields the total power, hence the power spectrum. 
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The Fourier transform of a signal can be defined by 

 
𝑅(𝜔) = ∫ 𝑠(𝑡)𝑒−𝑖𝑖𝑡∞

−∞ 𝑑𝑡                                                         (7) 

 
The autocorrelation function, ϕxx (t), can also be defined by 

 
𝜙𝑥𝑥(𝜏) = 1

𝑇
 ∫ 𝑠(𝑡)𝑠(𝑡 − 𝜏)𝑑𝑡𝑇

0                                                      (8) 

 
Now, the power spectrum of a signal can be obtained by taking the Fourier transform of the 

autocorrelation function. 

 
𝜙𝑥𝑥(𝜔) =  ∫ 𝜙𝑥𝑥(𝜏)𝑒−𝑖𝑖𝑡𝑑𝜏∞

−∞                                                     (9) 

 
The power spectrum represents the power density at frequency ω and measures the power 

content of the signal at each frequency.  The area under the power spectral magnitude curve is 

equal to the power of the signal. 

 
𝜙𝑥𝑥(𝜔) = 𝑅(𝜔)𝑅(𝜔) = |𝑅(𝜔)|2                                             (10) 

 
Generally, two parameters of power density spectrum are used to access useful measures of the 

spectrum.  The mean frequency is the average of all frequencies and the median frequency is the 

frequency that has equal distribution on each side.  The mean and median frequencies are defined 

by the following equation: 

𝑠𝑚𝑚𝑚𝑚 =  ∫ 𝑖ϕ𝑥𝑥(𝑖)𝑠𝑚𝑚𝑚
0 𝑑𝑖

∫ ϕ𝑥𝑥(𝑖)𝑠
𝑠𝑚𝑚𝑚

𝑑𝑖
                                                     (11) 

 
∫ 𝜙𝑥(𝜔)𝑠𝑚𝑚𝑚

0 𝑑𝜔 =  ∫ 𝜙𝑥𝑥(𝜔)𝑠0
𝑠𝑚𝑚𝑚

𝑑𝜔                                          (12) 

 
Of these two parameters, the median frequency was found to be less sensitive to noise.  Fig 6 

illustrates both mean and median frequency using an idealized fashion. 

 
8. Motor Control and Measurement  

 
8.1 Conscious Control 
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The movement behavior of the human body is often modeled by a closed-loop system.  It is an 

effective model for understanding continuous, long-duration skills such as tracking, balancing, 

and slow positioning. Once a movement is triggered internally, its control is passed in an all-or-

none fashion to the motor program for execution.  It usually requires approximately 150 to 200 

ms for modification once the movement is triggered. 
 

8.2 Motor Reflexes 
 

Reflexes can be defined as both involuntary and rapid responses to stimuli.  A reflex is the 

modification in the relatively low-level processing in the spinal cord and brain stem, and often 

does not involve conscious control.  The processes that contribute to the reflex can be studied by 

the EMG signal detected from a muscle that contributed to the reflex.  An EMG signal detected 

from a muscle that contributed to the reflex.  An EMG record from a muscle is shown in figure 7.  

The sequence of M1 responses, M2 responses, triggered reaction (not shown), and M3 responses 

are shown. 

 
Fig 6. An idealized version of the frequency spectrum of the EMG signals 

 
a.  M1 Response 

 
The most rapid and brief burst of EMG activity occurs at about 30 to 50 ms after the sudden load 

and is called the M1 response, M1 reflex, or monosynaptic stretch reflex.  The M1 response is 

caused by the muscle spindles in the muscle being stretched when the load is added, which 

results in sensory information being sent to the spinal cord.  After traveling to a single synapse in 
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the spinal cord, this information is routed directly back to the same muscle that was stretched, 

causing the increased contraction seen as the small EMG burst, The latency of this correction is 

very short because the information involves only one synapse and has a relatively short distance 

to travel. 

 
b.  M2 Response 

 
The second burst of EMG activity occurs at about 50 to 80 ms and is referred as the M2 response, 

M2 reflex, functional stretch reflex, or long-loop reflex.  The M2 response generates more EMG 

activity than the M1 reflex and has a longer duration.  Thus, it contributes far more to movement 

than the M1.  This response also arises from the muscle spindles and travels to the spinal cord, 

but then the impulses go up the cord to higher centers in the brain (the motor cortex and / or the 

cerebellum).  The longer travel distance and the additional synapses at the higher levels account 

for the longer delay in M2. 

 

The M2 is more flexible than M1, allowing for a few other sources of sensory information to be 

integrated in the response.  The M2 could be almost completely abolished and the M1 response 

world remains almost unmodified.  The amplitude of the M2 response for a given input can be 

adjusted voluntarily to generate a powerful response when the goal is to hold the position as 

firmly as possible, or it can result in almost no response if the movement goal is to release under 

the increased load. 

 
c.  Triggered Reaction 

 

A third type of response, somewhat longer in latency than the M2, has been termed a triggered 

reaction.  This action is also too fast to be a voluntary reaction, with latencies of 80 to 120 ms, 

but it is too slow to be an M2 response.  It can affect musculature that is quite remote from the 

actual stimulation site, and is sensitive to the number of stimulus alternatives, similar to the 

reaction-time response which apparently be learned. 
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Fig 7.  to a sudden EMG responses load 

d. M3 Response 

 
A final type of response to the added load is a voluntary reaction, sometimes called the M3 

response.  It is powerful and sustained, bringing the posture to the final position and holding it 

there.  The latency of the M3 response is around 120 to 180 ms, depending on the task, and it can 

affect all the musculature, not just those muscles that are stretched.  The M3 response is the most 

flexible of all, being modified by a host of factors such as instructions, anticipation, and so on. 

 

9. Measurement of Time 

 
The measurement has been used a great deal in motor behavior research.  Reaction time and 

movement time are the most common parameters used in many research areas. 

 
9.1 Research Time (RI) 

 
Reaction time is interval of the time from the arrival of a sudden load to the beginning of 

response to it.  In Fig.8, the subject is given a warning signal, and after a short fore period, the 

stimulus is presented.  Thus, temporal anticipation, when the stimulus will arrive, was prevented 

while spatial anticipation, or which response to make is preserved. 

 
During a substantial part of RT, the EMG is silent; indicating that the command to contract the 

muscle has not yet reached the muscle.  Then, late in the response period in RT, the muscle is 

activated, but no movement occurs for a period.  The interval from the signal to the first change 

in EMG is termed premotor RT and is thought to represent reflex and central processing.  The 
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interval from the first change in the EMG signal to movement is termed motor RT and is 

presented as processes associated with the musculature itself. 

 
9.2 Movement Time (MT) 

 
Movement time is usually defined as the interval from the initiation of the response (the end of 

RT) to the completion of the movement.  The sum of RT and MT is termed the response time. 
 

 
Fig 8.  Critical events involved in the reaction time paradigm. 
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FUNDAMENTALS TO MAGNETIC RESONANCE (NMR)  

AND MAGNETIC RESONANCE SPECTROSCOPY (MRS) 

 

Nuclear Magnetic Resonance (NMR) 

A chemical compound consists of molecules, and molecules are composite systems of atoms. An 

atom consists of a small nucleus and a cloud of electrons. The nucleus is made up from two types 

of subatomic particles, the protons (p), and the neutrons (n). According to quantum mechanics 

these subatomic particles are intrinsically spinning. When a number of these particles (p, n) are 

grouped together to form nucleus, their respective spins will add and the nucleus will have a net 

nuclear spin. The net nuclear spin is zero for all the nuclei except those with an odd number of 

protons and an even number of neutrons (and vice versa). These are the nuclei of importance to 

nuclear magnetic resonance (NMR). As the nuclei spin, their charges circulate and generate a 

magnetic field. Such magnetic nuclei, which have north and south magnetic poles, have no 

preferred orientation in space. But if we put them in a uniform static magnetic field, Η they tend 

to line up with the field (favorable state). The next thing we do is to change the orientation of the 

nuclei (perturb the nuclei) in the field (turn them over to make them point the other way). To 

achieve this (less favorable) state we have to apply energy into the system. This energy can be 

obtained from the application of a precisely tuned pulsed radio frequency (RF) field which is 

generated from a radio transmitter by changing its frequency. This field is orthogonal to the static 

field H. When the RF of the transmitter becomes equal to the frequency of the spinning nucleus 

then we achieve resonance and the RF at which resonance occurs is known as resonance 

or Larmor frequency ω. The equation 

ω= –γΗ 

is the key equation in NM / MRS, where Η is the magnetic field strength ,and γ is 

the gyromagnetic ratio (which is associated with each nuclei). 
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Magnetic Resonance Spectroscopy1 

MRS has been used by chemists for many years for the analysis of chemical compounds. In 

medicine2, MRS is a powerful technique which allows access to the chemistry of the brain or 

other parts of the human body. 

Magnetic Resonance Imaging (MRI) images consist of a series of T1 and T2 weighted images 

(T1 and T2 are known as relaxation times). They are used to guide the localization of area of 

interest for MRS studies. That is, from these images, a cube like region (a “voxel” or volume 

element) is chosen for specific MRS examination.  

For example, in the case of: an Alzheimer’s disease examination, we might choose to examine an 

homogeneous area in the occipital grey matter; or for an examination of a tumor, one would 

obviously choose the site of the tumor. 

MRS performs localization through frequency and phase encoding in the presence of a magnetic 

gradient inside the homogeneous magnetic field of the MRI machine. This allows us to excite the 

specific region of the body that we are interested in by a radio frequency (RF) pulse. When one 

strikes that specific region of the body with a RF pulse, this region begins to resonate based on 

the chemicals within that region. Then, the resultant resonances are read out using radio 

frequency detectors. Note that in the brain multiple chemicals resonate at multiple frequencies. 

The resultant signal, detected by the detectors, is termed free-induction decay (FID). The FID is 

a signal generated by the alterations of the local magnetic field, with its amplitude decaying 

gradually as the magnetization of the region returns to its baseline and is losing its strength. 

The FID is a sum of all resonances. Then, by applying Fourier transformation (FFT) on FID, it is 

possible to determine which chemicals are present (from the signal’s frequency or ppm content) 

in the region being examined. 

The following is a list of the major neurochemical markers available at short-echo times (TE: 

15 to 35 ms) using standard single-voxel PRESS sequence and includes: 
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1. NAA (N-Acetyl-Aspartate), a neuronal marker. NAA peak resonates at about 2.0 ppm. 

2. Cho (Choline), a marker for myelination, indicates axons break up and degradation. Cho peak resonates at 

about 3.2 ppm. 

3. Cr (Creatine), an energy marker. Cr peak resonates at about 3.00 ppm. 

4. Myo (Myoinositol), a marker for gliosis and glial activity. Myo peak resonates at about 3.5 ppm. 

5. Lac (Lactate), reflects cell death or anaerobic respiration. Lac (doublet) peak resonates at 1.33 ppm 

Lactic acid levels get higher when strenuous exercise or other conditions such as heart failure, a severe infection 

(sepsis), or shock are taken place. Then, blood flow and oxygen throughout the body becomes lower. Very high 

levels of lactic acid cause a serious, a sometimes life-threatening condition. 

6. Glu (Glutamate and glutamine), neurochemical markers. Glu/Gln peak resonates at about 2.2-2.4 ppm. 

Glutamate is a neurotransmitter that is released by nerve cells in the brain. It is responsible for sending signals 

between nerve cells, and probably very important in the learning and memory processes. If glutamine is too much 

this may lead to seizures and the death of brain cells, if it is too little, it can cause psychosis, coma and death. Excess 

Glu, not only over stimulates the nervous system, it is also toxic to the brain and can age/degenerate it too quickly 

and can cause brain damage after stroke. Glutamine is an important amino acid with many functions in the body. It 

is a building block of protein and critical part of the immune system. Furthermore, it has a special role in intestinal 

health. Our body produces this amino acid, and it is also found in many foods. 

7. Lip (Lipids), fat in head in pediatrics indicate poor outcome. They are usually associated with necrosis, growth 

arrest, inflammation, malignancy, apoptosis, and craniopharyngioma which is connected to high amounts of 

cholesterol in the cyst fluid. Lip  (CH2n) peak resonates at about 1.3 ppm, and Lip (CH3) at 0.9 ppm. 

8. Alanine (doublet) peak resonates at 1.47 ppm. 

9. GABA (Gamma-aminobutyric acid). GABA peaks resonate at 2.2-2.4 ppm. 

10. Citrate peak resonates at 2.6 ppm. 

These markers are identified by the frequencies (or ppm) at which they occur.  

Looking at the list of neurochemical markers just presented, it is surprising that different chemical markers 

resonate at the same resonance frequencies (ppm). We believe that this is due to (i) the MRI/MRS machine’s 

inability to differentiate them and obtain finer data and (ii) the weakness of FFT to differentiate frequencies 

that are to close together. More specifically, several frequencies (which correspond to the different chemicals) 

are close together and fall under an envelope and appear to be as one frequency (but actually there are more). 

We believe that the new MRI scanners (3 Tesla and above) will resolve the first problem and that Wavelets, 

can easily resolve the second problem (see the proposed method below). 

Note: Head injuries are perhaps the most damaging of all traumas, because of the variability in 

cause, extent, and effect.  They are also, one of the most difficult types of trauma to diagnose. 

Not too long ago, MRS has emerged as a new and more accurate method in both the diagnosis of 
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the severity of head trauma, and in the prediction of the outcome of patients, especially in cases 

where patients are comatose. 

At the Huntington Magnetic Resonance Spectroscopy Unit, in Pasadena CA, Dr. B. Ross and his 

collaborators have reported that in traumatic head injury, many chemical markers have been 

analyzed and are used for diagnosis. More specifically: They reported that: 

• NAA, in most cases of head trauma is reduced to some degree. They observed that if this reduction is 

slight, this indicates optimistic prediction. However, if it is high, this indicates permanent brain damage and 

severe mental retardation, 

• Cho: If elevated levels of Cho are observed, seen during the breakdown of myelin in axons and in 

membrane degeneration,  associated with diffuse axonal injury, the prognosis is good if Cho is the only 

abnormal metabolite in the spectrum, 

• Lac: the presence of Lac, is a sign of hypoxia, and in general predicts a very poor outcome for a patient. 

Through examination of these metabolites and others, it is possible to obtain a much more 

quantitative diagnosis of head injury and a much more accurate prediction of future outcome 

than other clinical standards. Note that in the above studies, the data were phase corrected and 

the signals from pure water were suppressed by post process. 

____________________________ 

1 A bit simpler description of the proposed process: When MRS is used the patient is placed inside a homogeneous magnetic 

field. This field causes the spins of protons to align in a specific direction, designated the longitudinal direction. A short RF pulse 

transverse to this field is then used to synchronize the precession of these proton spins. When this pulse ends, the spins revert 

back to their original state, emitting radio signals in the process. The exact signal a proton emits depends on the specific chemical 

environment of the proton; nuclei in different environments emit radio signals at different frequencies. These signals are 

combined to form a free induction decay which is then analyzed through FFT. By examining the spectra in frequency space, it is 

possible to determine the concentrations of certain chemicals and metabolites in a given sample. This makes spectroscopy an 

extremely powerful diagnostic tool. Furthermore, because the fields used function at radio frequency, magnetic spectroscopy 

examinations are also extremely safe. 

2 In MRS experiments, it has been observed that high resolution spectral analysis requires relatively low molecular weight 

compounds (otherwise the spectra become too complex), very pure homogeneous samples, and extremely homogeneous 

magnetic fields of high strengths (i.e. 3 Tesla or more). 

In MRS studies of humans we wish to determine accurately, the chemical composition of a specific region in the human body 

containing the tumor under study In general, these regions are tissues comprised of very complex molecules, are highly non-
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homogeneous, and contain high levels of water and fat as well as small amounts of metabolites (which have been reported to be 

useful in tumor characterization). Furthermore, the high intensity signals from water and fats severely interfere with the 

observation of the weak signals from low molecular weight metabolites. 

For example, the tissue -water signals is typically four orders of magnitude more intense than that of the metabolites, making it 

difficult to observe the weak metabolite signals in the present of the intense water signal. 

Clearly, the above imposed limitations by the biological systems require strong magnetic fields (i.e. 3 Tesla or more).  
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FUNDAMENTALS OF WAVELET TRANSFORM (CONTINUOUS AND DESCRETE) 

AND APPLICATIONS TO MEDICAL SIGNALS  

  
Introduction 

Surface electromyography (S-EMG) is a method used to detect the electric potential generated 

by muscle contraction that is self-generated or caused by external excitation such as the 

application of a sudden load. S-EMG signals are obtained using a data acquisition system, which 

acquires and stores the electrical potential responses. These kinds of signals are complex and 

reflect the physiological properties of a muscle; they are noisy, and non-stationary.  Nowadays, 

despite certain deficiencies of FFT, in most cases, S-EMG signals are analyzed using FFT based 

methods. During the last decade, in order to resolve these difficulties, another more suitable 

approach has been introduced. This approach, known as Wavelet transform (WT), is designed to 

handle this kind of signals. It can help, to de-noise them, to provide high resolution their 

frequency content, and help us identify the existence of features undetected by FFT methods. 

Literally, it acts as a mathematical microscope. In this study, we compare several categories of S-

EMG signals using Fast Fourier Transform (FT/FFT), Short Time (Window) Fourier Transform 

(STFT), and Continuous Wavelet Transform (CWT), and the strengths and weaknesses of these 

methods are discussed. The results show that the FFT and STFT methods have resolution 

limitations while the CWT approach does not and is particularly useful when time-frequency 

analysis is important.  

 

1. Mathematical Basis 

 

1.1 From Generalized Fourier series to Wavelet Transforms 

 

Let us consider the following set of the mutually orthonormal vector functions defined in the 

interval  𝑎 ≤ 𝑡 ≤ 𝑏 
 

 𝜙0(t),  𝜙1(t), 𝜙2(t), 𝜙3(t), …, 𝜙n(t), … 

 known as “basis functions”. 
 

Then, a square integrable function s(t), (a signal of finite energy) 
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� (𝑠 (𝑡))2𝑑𝑡 < +∞
𝑏

𝑚
  

can be represented by 

𝑠(𝑡) = c0 𝜙0(t) +c1𝜙1(t) + c2𝜙2(t) + c3𝜙3(t) + … + cn𝜙n(t) + …            (1) 

where                                         𝑐k =  〈𝑠(𝑡), 𝜙𝑘(𝑡)〉 =∫ 𝑠(𝑡)𝜙𝑘
𝑏

𝑚  (t) dt                                           (2)          

                                                    k = 0, 1, 2, 3, …, n,… 
 

The expression (1) for 𝑠(𝑡) is known as generalized Fourier series (GFS) and 𝑐k are known as 

generalized Fourier coefficients (GFC).   
 

If in the expression (1) for s(t), we use the first n – terms, we obtain an approximation for s(t), 

represented by sn(t) 

                               Projection of sn(t)     Projection of sn(t)           Projection of sn(t) 
                                  in 0-direction        in 1-direction              in n-direction   

   

(3) 

 

The terms inside the brackets are the known GFC for sn(t). 

   

In the case that the signal sn(t) is a non-periodic one, the interval 𝑎 ≤ 𝑡 ≤ 𝑏 is replaced by the 

interval −∞ < 𝑡 < ∞,   and the basic functions are replaced by trigonometric functions, then the 

coefficients ck became the Fourier Transforms (FT) of the signal. 

  

1.2 The Problem with Fourier Transform 

Although Fourier transform is one of the most important mathematical tools used in the analysis 

of non-periodic (periodic with infinite period) signals, it has a serious drawback.  In transforming 

𝑠(𝑡) into the frequency domain, time information is lost. That is, when looking at a Fourier 

transform of a signal, it is impossible to tell when a particular event took place. 
 

If a signal doesn’t change over time (stationary signal), this drawback is not very important. 

However, S-EMG signals contain numerous non-stationary or transitory characteristics such as 

0 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( )
b b b

n n n n n n
a a a

s t s t t dt t s t t dt t s t t dt tφ φ φ φ φ φ
     

≅ + + +     
     
∫ ∫ ∫
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frequency bursts, spike discontinuities, abrupt changes, and transients. These characteristics are 

often the most important part of the signal, and Fourier analysis is not suited to detect them.   
 

In addition, the existence of closely located frequencies can complicate the analysis by 

eliminating the ability to distinguish one frequency from another requiring the use of carefully 

designed filters.  

 

1.3 Short Time Fourier Transform (STFT) 
 

Due to the limitation of Fourier Transform on a non-stationary signal, Dennis Gabor (1946) 

adapted FFTs for the analysis of small sections of the signal at a time (windowing the signal). 

Gabor named this approach Short-Time Fourier transform (STFT) or Window Fourier Transform 

(WFT)).  

The STFT represents a sort of compromise between time and frequency-based views of a signal, 

and it provides some information about both (time and frequency) when and at what frequencies 

a signal event occurs. 
 

In STFT the signal s(t) must have features that are approximately constant in a short time 

interval, which is the domain of window w(t). If the signal s(t) is multiplied by the window 

function w(t), a window portion of the original signal s(t) is created, subsequently named g(t). 

Then, if we translate the window w(t) along the t-axis, we generate the window portions of the 

original signal s(t): g(t-t
0
), g(t-2t

0
),… (Fig 1). 

 
Fig 1.  STFT windowing process (Ref. [1])  

 
The following is the mathematical description of the STFT process of a non-stationary signal 

s(t). 
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Continuous STFT:   F(t, ω) = 𝑅𝑇𝑆𝑇(𝑡, 𝜔) = ∫ 𝑠(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑖𝑖𝑡𝑑𝜏∞
−∞    (4) 

where s(t) is considered to be stationary within the width of the window w(t), and ω = 2πf. 

Observe that we can only obtain information with limited precision, and the precision is 

determined by the size of the window w(t). Then, we slide the window along the time axis, while 

we increase or decrease its width for the particular time t.  Then, in each case, we compute the 

FFT (DFT) of the frame and generate its frequency spectrum. 
  
1.4 The Heisenberg Uncertainty Principle and the Weakness of STFT 
 

The time-frequency resolution is limited by the Heisenberg Uncertainty Principle, which states 

that for any transform pair  

𝑤(𝑡) ↔ 𝑊(𝜔),   ∆𝑡 ∙  ∆𝜔 ≈ 1                                     (5) 

where ω represents frequency. 

with    σ
t
 • σ

ω
 ≥ constant, at every point (σ

t
, σ

ω
) (Heisenberg Uncertainty Principle) 

where: σ
t
, σ

ω
 measure the root mean square (RMS) spread of w(t), and W(ω) respectively, and 

are given by  

𝜎𝑡 =  �∫ 𝑡2|𝑤(𝑡)|2𝑑𝑡∞
−∞
∫ |𝑤(𝑡)|2𝑑𝑡∞

−∞
 ,  𝜎𝑖 =  �∫ 𝑖2𝑊|𝑖|2𝑑𝑖∞

−∞
∫ |𝑊(𝑖)|2𝑑𝑖∞

−∞
                   (6) 

 
The product of the resolution in time and resolution in frequency is limited by increasing 

resolution in frequency, decreasing resolution in time and vice versa.  The choice of the window 

function has a significant effect on the STFT. The window determines how much of the signal 

will be used in the analysis and controls the frequency resolution of the Fourier spectrum.  Such 

time-frequency resolution is shown below:  
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Fig 2.  Time-frequency plane showing resolution cells for STFT (∆𝑡 = 2σ𝑡 , ∆𝜔 = 2σ𝑖) (Ref.[2])  

 

In addition, if s(t) has a transient component which has a duration smaller than σt , it is difficult 

to locate it with better precision than σt. That is since s(t) has key features of varied sizes, it is 

difficult to find an optimum window function w(t) for the analysis of s(t).  Thus, STFT is more 

suitable for the analysis of signals where all the features appear approximately at the same scale.  

In the time-frequency diagram shown in Fig 2, for each point (t, 𝜔),  we associate a square, 

centered at that point with side lengths 2σt and 2σω, (∆𝑡 ∙  ∆𝜔, 𝑖𝑠 𝑑𝑒𝑑𝑖𝑑𝑒𝑑 𝑎𝑠 a resolution cell 

(RC). In Fig 2, observe that for each point (t, 𝜔),  the RC are the same. 

 
In summary, the STFT represents a compromise between time and frequency-based views of a 

signal. It provides some information about (both) the time and frequency occurrence of an event. 

However, we can only obtain this information with limited precision, and the precision is 

determined by the size of the window. Furthermore, the application of STFT is not practical 

(time consuming). Therefore, we need a (dynamic-scale dependent) window, which has the 

highest correlation with all the local features of the signal (weakness of STFT). 

 

1.5 The Wavelet Transform (WT) 

 

WT may be thought of as a mathematical microscope which can detect singularities or abrupt 

changes in the signal as well as fine frequency details.  These characteristics of the wavelet 
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transform to make it a more powerful tool than Fourier methods for signal analysis, providing an 

improved time-frequency resolution. 

 

1.6 Continuous Wavelet Transform (CWT) 

CWT is a better alternative to STFT.  CWT is designed to overcome the fixed window 

(resolution problem) of the STFT.  In CWT the scale parameter is used. Scale enables us to use a 

practically infinite number of windows. In CWT, the window is dynamic, covering the low and 

high frequency information at the same time.   

1.7 Mathematical description of CWT 
  

If in the expression (3) for s(t), we replace  𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑠 𝑑𝑓𝑑𝑐𝑡𝑖𝑓𝑑𝑠 𝜙𝑘(𝑡) with 1
�|𝑚|

 𝜓𝑘 �𝑡−𝑏
𝑚

�  

then                          𝑠(𝑡) = c0 
1

�|𝑚|
 𝜓0(

𝑡−𝑏
𝑚

) +c1 
1

�|𝑚|
𝜓1(

𝑡−𝑏
𝑚

) + … + cn 
1

�|𝑚|
 𝜓n(

𝑡−𝑏
𝑚

) +…               (7) 

where:   
1

�|𝑚|
𝜓0(𝑡−𝑏

𝑚
), 1

�|𝑚|
 𝜓1(

𝑡−𝑏
𝑚

), 1
�|𝑚|

𝜓2(
𝑡−𝑏

𝑚
), … , 1

�|𝑚|
𝜓n(

𝑡−𝑏
𝑚

) … 

 

are mutually orthonormal (2 parameter family) special basis functions defined in 𝑡1 ≤ 𝑡 ≤ 𝑡2. 

The coefficients cn , for n=0, 1, 2, …, can be obtained from expression (2) 
 

 cn (𝑎, 𝑏) =  1
�|𝑚| ∫ 𝜓𝑚(𝑡−𝑏

𝑚
) 𝑠(𝑡)𝑑𝑡𝑡2

𝑡1
                                             (8) 

  

If the functions 𝜓𝑘 �𝑡−𝑏
𝑚

�, with k = 0, 1, 2, 3, …, n, … have oscillatory behavior with amplitudes 

that rapidly decay to zero in both positive and negative directions, then the functions 𝜓𝑘 �𝑡−𝑏
𝑚

� 

are called Wavelets. 
 

If in the expression (8) we replace the interval [𝑡1,𝑡2] with �−∞,  ∞�, then 

𝑊(𝑎, 𝑏) =  1
�|𝑚|

 ∫ 𝜓∞
−∞ �𝑡−𝑏

𝑚
� 𝑠(𝑡)𝑑𝑡 ,  𝑎 ≠ 0                                           (9) 

This defines the Continuous Wavelet Transform (CWT).  The CWT is expressed as the 

correlation between the signal and the scaled wavelets.   
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The following is a special mother wavelet known as Morlet wavelet 

                              𝜓𝑘 �𝑡−𝑏
𝑚

� =  𝜋−1
4�  𝑒𝑖𝑖𝑘�𝑡−𝑏

𝑎 �𝑒

−�𝑡−𝑏
𝑎 �

2

2
�

, k = 0, 1, 2, … , n, …            (10) 

 

1.8 Time-frequency relation 

 

For the case of the Morlet wavelet, the following relation connects scale (𝑎) and frequency 

(𝜔) (Ref. [6]), 

𝑎𝜔 =
𝑖0+ �(2+𝑖0

2)

2𝜋
   ,    where  𝜔0 ≥ 5  (𝜔0 is a reference frequency)                (11) 

 

1.9 Scalogram 
 

A scalogram is a visualization of a continuous wavelet transform. There are three axes: x 

representing time, y representing scale, and z representing coefficient value. The z axis is often 

shown by varying the color or brightness.  

A wavelet scalogram is the analogue of a spectrogram for FFT. 
 

 
Fig 3.  S-EMG scalogram. 

 

As stated earlier (see STFT), if a signal s(t) has a transient component which has a duration 

smaller than σt , it is difficult to locate it with better precision than σt. In other words, if the signal 

s(t) has key features of varied sizes, then we cannot find an optimum window function w(t) for 

the analysis of s(t).  However, in the case of CWT, this is possible since for a given time, and 
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time window width, we can have a great number of window choices with various resolution 

choices in time or scale (frequency). This is clearly shown in Figures 3 and 4. 

 

 
Fig 4.  Time-frequency plane showing variable resolution cells for any given time t (Ref. [2]).  

 
1.10 Examples of a typical S-EMG signal and its FFT , STFT, and CWT 
 
 

• FFT of S-EMG 
 

 
 

Fig.5  Fast Fourier Transform of a typical S-EMG signal 
 

When FFT of the entire signal is used, it is impossible to distinguish frequency differences 

between peeks that are too close to each other. This may cause an inaccurate estimation of the 

frequency content. Furthermore, in order to understand better, the S-EMG signal, it is necessary 

to obtain its high-resolution frequency profile. For that reason, traditionally we apply various low 

pass, high pass, band pass and specially designed filters.  
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• Example of STFT (WFFT) of S-EMG using Mexican Hat Window 
 
 

 
 

Fig 6a.  Short Time Fourier Transform of a typical S-EMG signal 
                                       using a Mexican Hat window center:  700, width: 100  
 

 

 
 

Fig 6b.  Short Time Fourier Transform of a typical S-EMG signal  
                                       using a Mexican Hat window center: 700, width: 300 
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Clearly, the STFT approach helps to resolve the issue of obtaining time and frequency 

information simultaneously. However, it suffers from constrains imposed by the window width 

used. Therefore, to resolve this problem a great number of window types and widths are needed, 

and the optimum window choice is difficult to obtain.  More specifically, if a signal s(t) has a 

transient component which has a duration smaller than σt , it is difficult to locate it with precision 

better than σt. In other words, if the signal s(t) has key features of varied sizes, then it is difficult 

to find an optimum window function w(t) for the analysis of s(t), which is a time-consuming 

problem. Furthermore, in the STFT approach, it is impossible to distinguish frequency 

differences between peaks that are too close to each other within the window width. This may 

cause an inaccurate estimation of the frequency content.  

 
By using the CWT approach, the problem discussed in 2.0 is eliminated. Using CWT (Mexican 

Hat Window), it is possible that for any given time, we can view the signal with any desired 

resolution with respect to time and frequency and thus obtain any features that the signal may 

contain in accordance with the Heisenberg’s uncertainty principle. This is clearly shown in 

Fig.7a, 7b. 

 

• Examples of the application of CWT on S-EMG (different high-resolution 

frequency bands) 
 

 
Fig.7a CWT of S-EMG, Wavelet Transform 
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Fig.7b CWT of S-EMG, Wavelet Transform 
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2. The Discrete Wavelet Transform, Multiresolution analysis (MRA) 

 

Multiresolution analysis (MRA) Haar wavelet transform (WT) has been applied on a surface 

electromyography signal (S-EMG). Then, the original signal was decomposed into a 

predetermined number of sub signals which in turned were subjected to FFT. This resulted into a 

high-resolution frequency spectrum (frequency bands) for the original signal. The wavelet based 

spectral analysis was the only way to obtain such a detailed frequency spectrum. 

In order to provide this information, the S-EMG signal is decomposed into a predetermined 

number of sub signals which in turn are subjected to FFT. The resulted frequency spectrum helps 

us to determine the high-resolution frequency behavior for the S-EMG we are dealing with.  

 
2.1 Theoretical basis  

The Haar Decomposition and Reconstruction Wavelet Theory (Ref. 1) 

The Haar decomposition and reconstruction transform (averaging and difference algorithm) is 
demonstrated below using the simple example of 8 data points s = (s0, s1, s2, s3, s4, s5, s6, s7)T:  

s0

s1

s2

s3

s4

s5

s6

s7 Transform
Matrix8x8

=

s1
0

d1
0

s1
1

d1
1

s1
2

d1
2

s1
3

d1
3 Permute
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0
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Fig. 1 The multiresolution decomposition 

 



39 
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Fig. 2 The multiresolution reconstruction 

Next, to make things clearer, let us consider the discrete signal s(t), used earlier (23 data points) 

in Hilbert space L2([0,1]).  The MRA of L2([0, 1]) consists of a sequence of embedded closed 

subspaces V0, V1, V2 and V3 in L2([0, 1]) satisfying certain mathematical conditions (we do not 

include them here). 

The MRA decomposition and reconstruction process can be also depicted from the following 

diagrams. 

 

where 
 
𝑅𝐿(𝑡) =  ∑ 𝑐2𝑘Ф(22𝑡 − 𝑘)3

𝑘=0 ,  𝑐2𝑘 =  ∫ 𝑅𝐿(𝑡)Ф(22𝑡 − 𝑘)𝑑𝑡1
0  (decomposition level 1) 

 

𝑅𝑙𝐿(𝑡) =  ∑ 𝑐1𝑘Ф(2𝑡 − 𝑘)1
𝑘=0 ,  𝑐1𝑘 =  ∫ 𝑅𝐿𝐿(𝑡)Ф(2𝑡 − 𝑘)𝑑𝑡1

0   (decomposition level 2) 
 

𝑅𝐿𝐿𝐿(𝑡) =  𝑐00Ф(𝑡),                          𝑐00 =  ∫ 𝑅𝐿𝐿𝐿(𝑡)Ф(𝑡)𝑑𝑡1
0   (decomposition level 3) 

 
and 
 
𝑅𝐻(𝑡) =  ∑ 𝑑2𝑘ψ(22𝑡 − 𝑘)3

𝑘=0 ,  𝑑2𝑘 =  ∫ 𝑅𝐿(𝑡)ψ(22𝑡 − 𝑘)𝑑𝑡1
0  (decomposition level 1) 

 
𝑅𝐿𝐻(𝑡) =  ∑ 𝑑1𝑘ψ(2𝑡 − 𝑘)1

𝑘=0 ,  𝑑1𝑘 =  ∫ 𝑅𝐿𝐻(𝑡)ψ(2𝑡 − 𝑘)𝑑𝑡1
0  (decomposition level 2) 

 
𝑅𝐿𝐻𝐻(𝑡) = 𝑑00ψ(𝑡),                   𝑑00 =  ∫ 𝑅𝐿𝐿𝐻(𝑡)ψ(𝑡)𝑑𝑡1

0   (decomposition level 3) 
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Fig.3 Decomposition Process Chart for 8 data points 
 
 
The MRA reconstruction process is the inverse process of the decomposition.  It recovers the 
original signal S(t) as follows. 
 

      S(t) = SLLL(t) + SLLH(t) + SLH(t) +SH(t) 
 

where SLLL(t) ϵ V0, while SLLH(t) ϵ W0, SLH(t) ϵ W1, and SH(t) ϵ W2. 
 
 S(t) = c00Ф(t) + d00 ψ (t) + ∑ 𝑑𝑘ψ(2𝑡 − 𝑘) + ∑ 𝑑2𝑘ψ(22𝑡 − 𝑘)3

𝑘=0
1
𝑘=0  

 
 

where S(t) will be SLLH(t), SLH(t), and SH(t) depending on the level of reconstruction. 
 
 



41 
 

2

SH(t) = d(1)(t)

sLL(t) = s(2)(t)

sLLL(t) = s(3)(t)

sLLH(t) = d(3)(t)

 sLH(t) = d(2)(t)

Low 
Frequency

sL(t) = s(1)(t)

Input signal 
S(t)

(8 Data points)

s(t)

SL(t)
(4 Data points)

SLL(t)
(2 Data points)

SLH(t)
(2 Data points)

SH(t)
(4 Data points)

SLLH(t)
(1 Data point)

SLLL(t)
(1 Data point)

V3

W2

V2

V1

W1

W0

V0
LLL

LLH

LH

H

FFT 
F(ω)

FFT
FL(ω)

FFT 
FLL(ω)

FFT 
FLH(ω)

FFT
FH(ω)

FFT
FLLH(ω)

FFT
FLLL(ω)

2

2

 

Fig 4. Reconstruction Process Chart for 8 data points                     

The Haar transform is the simplest of the wavelet transforms. This transform cross-multiplies 

a function against the Haar wavelet with various shifts and stretches, like the Fourier transform 

cross-multiplies a function against a sine wave with two phases and many stretches. From the 

analysis of the experimental data via the Haar Transform to analysis the S-EMG signals, we 

observe that the mean frequency values for all decomposition levels (L7 and L8) is between 0.07 

- 0.21, and that the two highest levels contribute the highest frequencies. Clearly, one can 

observe from Fig.3 that the FFT of the original signal does not provide a high-resolution 
spectrum. 
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2.2 The Daubechies (D4) Decomposition and Reconstruction Wavelet Theory (Ref. 1) and 
Mallat’s Algorithm (Ref.2) 

The discrete wavelet transform provides a method for the analysis of S-EMG signals. It allows 

specific features of a signal to be localized in time by decomposing the signal into a family of 

basis functions of finite length, called wavelets. A particular property of the method is its ability 

to identify and isolate fine structures of a signal. This may be the small perturbations in an 

otherwise smoothly varying signal which are difficult or impossible to detect by other means. 

That property makes the discrete wavelet transform valuable for the analysis of S-EMG signals.  

Discrete Wavelet Transform (DWT), the Pyramidal Algorithm (Ref. 3). 

 
 A signal s(t), defined in the interval 0≤ 𝑡 < 1, is represented by the discrete sequence  
 

𝑠(𝑡) =  �𝑠0(𝑡), 𝑠1(𝑡), 𝑠2(𝑡), … ,  𝑠𝑚−1(𝑡𝑚−1)�
𝑇
                                     (1) 

 

The DWT Pyramidal Algorithm (PA) transforms the sequence defined in (1) into a new sequence  

 

𝑎(𝑡) =  �𝑎0(𝑡), 𝑎1(𝑡), 𝑎2(𝑡), … ,  𝑎𝑚−1(𝑡𝑚−1)�
𝑇
                                      (2) 

𝑠(𝑡) =  𝐿3
𝑇𝐿2

𝑇𝐿1
𝑇𝑎0(𝑡) +   𝐿3

𝑇𝐿2
𝑇𝐻1

𝑇𝑎1(𝑡) +  𝐿3
𝑇𝐻2

𝑇 �𝑚2(𝑡)
𝑚3(𝑡)� + 𝐻3

𝑇  �
𝑎4(𝑡)
𝑎5(𝑡)
𝑎6(𝑡)
𝑎7(𝑡)

�               (3) 

 

where L signifies low-pass filtering and H signifies high-pass filtering.  The transformation 

matrices Li and Hi , i= 1, 2, 3 must be orthogonal, and the coefficients 𝑎𝑖 (𝑡) are given by 

 

𝑎0 (𝑡) =  
1
2 

 𝐿1
1
2

𝐿2  
1
2

 𝐿3 𝑠(𝑡);         𝑎1(𝑡) =  
1
2 

 𝐻1
1
2

𝐿2  
1
2

 𝐿3 𝑠(𝑡) 

(4) 

�𝑚2(𝑡)
𝑚3(𝑡)� =  1

2 
𝐻2  1

2
 𝐿3 𝑠(𝑡);         �

𝑎4(𝑡)
𝑎5(𝑡)
𝑎6(𝑡)
𝑎7(𝑡)

� = 1
2

 𝐻3 𝑠(𝑡) 

 
For the case, Daubechies’ D4 wavelet (Ref. 1), the transformation matrices are: 
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                                                          𝐿1 =  [𝑐0 +  𝑐2     𝑐1 + 𝑐3];      
 
 

                                                 𝐿2 =  �𝑐0
𝑐2

  𝑐1
𝑐3

  𝑐2
𝑐0

  𝑐3
𝑐1

�; 
 
 

                                                         𝐿3 =  

⎣
⎢
⎢
⎢
⎡

𝑐0  𝑐1  𝑐2  𝑐3                         
              𝑐0  𝑐1  𝑐2  𝑐3               

                       𝑐0  𝑐1  𝑐2  𝑐3
𝑐2  𝑐3                           𝑐0  𝑐1 

                   ⎦
⎥
⎥
⎥
⎤
 

 

 

                                                         𝐻1 = [−𝑐3 − 𝑐1     − 𝑐2 +  𝑐0]; 
 
 
                                                         𝐻2 =  �−𝑐3

−𝑐1
  𝑐2

𝑐0
  −𝑐1

−𝑐3
  𝑐0

𝑐2
� ; 

 

𝐻3 =  

⎣
⎢
⎢
⎢
⎡

−𝑐3  𝑐2  − 𝑐1  𝑐0                                 
                 −𝑐3  𝑐2  −𝑐1  𝑐0                   
                                −𝑐3  𝑐2  − 𝑐1  𝑐0  
−𝑐1  𝑐0                                  − 𝑐3  𝑐2 

                   ⎦
⎥
⎥
⎥
⎤
                        (5) 

 
Where                                           𝑐0 = (1 + √3 )/4,     𝑐1 = (3 + √3 )/4,                                                             (6)  

                                                        𝑐2 = (3 −  √3 )/4,    𝑐3 = (1 −  √3 )/4 
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